Design Strategies for Mycelium-Based Composites.
Adrien Rigobello, Phil Ayres.
Abstract:
Mycelium-based composites (MBC) can be designed utilising a wide range of lignocellulosic substrates and widely distributed versatile ligninolytic fungi. While a wide range of mechanical behaviour has already been reported in the past 15 years, showing potential to obtain viable products for a variety of uses; no systematic description of the engineering parameters has been established till date. We review carbohydrate-active enzyme (CAZyme) activities of fungal species, lignocellulosic substrate chemical profile at cellular level, wetting characteristics, substrate aggregate and composition characteristics. We identify three principal strategies for designing MBC: supplementation, densification and composition, and discuss them regarding outstanding reports from the state-of-the-art. We report on solid-state fermentation supplements having significant effect on fungal CAZymes activities (e.g. monosaccharide, nitrogen, ash, pH buffer). State-of-the-art designs and process control promote specific enzymatic activities independent of species genomics; systematically investigating supplementation, densification and composition design strategies in the future may lead to both a widening and deepening of the available material qualities, along with a focus on developments around functional poles. Additionally, future reproducibility studies of MBC development reports may both improve the overall market readiness and public adoption of MBC solutions and valorise the wealth of material and design semiotic properties that the versatility and affordability of MBC systems support.

Published in:
Fungi and Fungal Products in Human welfare and Biotechnology (May 2023). Editors: Satyanarayana T., Deshmukh, S.K. Springer Nature, Singapore. ISBN: 978-9811988523. DOI: 10.1007/978-981-19-8853-0_20.

Illustration credit: A. Rigobello.
Bibliography:
Duggar BM (1905) The principles of mushroom growing and mushroom spawn making. U.S. Government Printing Office
Attias N et al (2020) Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J Clean Prod 246:119037. https://doi.org/10.1016/j.jclepro.2019.119037
Appels FVW, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wösten HAB (2020) Fungal mycelium classified in different material families based on glycerol treatment. Commun Biol 3(1):1–5. https://doi.org/10.1038/s42003-020-1064-4
Ohm RA et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963. https://doi.org/10.1038/nbt.1643
Sawitzke JA et al (2013) Recombineering: using drug cassettes to knock out genes in vivo. Methods Enzymol. Laboratory Methods in Enzymology: Cell, Lipid and Carbohydrate 533:79–102. https://doi.org/10.1016/B978-0-12-420,067-8.00007-6
Alves AMCR et al (2004) Highly efficient production of laccase by the basidiomycete pycnoporus cinnabarinus. Appl Environ Microbiol 70(11):6379–6384. https://doi.org/10.1128/AEM.70.11.6379-6384.2004
Yang Z, Zhang F, Still B, White M, Amstislavski P (2017) Physical and mechanical properties of fungal mycelium-based biofoam. J Mater Civ Eng 29:04017030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001866
Tacer-Caba Z, Varis JJ, Lankinen P, Mikkonen KS (2020) Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater Des 192:108728. https://doi.org/10.1016/j.matdes.2020.108728
Moser FJ et al (2017) Fungal mycelium as a building material. In: The annual symposium of the International Association for shell and spatial structures. Fachgruppe Biologie, Hamburg
Chen S et al (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3(1):913. https://doi.org/10.1038/ncomms1923
Brischke C, Alfredsen G (2020) Wood-water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biotechnol 104(9):3781–3795. https://doi.org/10.1007/s00253-020-10479-1
Floudas D et al (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719. https://doi.org/10.1126/science.1221748
Castaño JD, Zhang J, Anderson CE, Schilling JS (2018) Oxidative damage control during decay of wood by brown rot fungus using oxygen radicals. Appl Environ Microbiol 84(22):e01937–e01918. https://doi.org/10.1128/AEM.01937-18
Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21(4):133–170. https://doi.org/10.1016/j.fbr.2007.09.001
Tinoco R, Verdin J, Vazquez-Duhalt R (2007) Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidase from Bjerkandera adusta. J Mol Catal B Enzym 46(1):1–7. https://doi.org/10.1016/j.molcatb.2007.01.006
Zamocky M et al (2006) Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7(3):255–280. https://doi.org/10.2174/138920306777452367
Kubicek CP (2012) Fungi and lignocellulosic biomass. Biomass and biofuels. Wiley-Blackwell, Ames
Gomes I, Gomes J, Steiner W, Esterbauer H (1992) Production of cellulase and xylanase by a wild strain of Trichoderma viride. Appl Microbiol Biotechnol 36(5):701–707. https://doi.org/10.1007/BF00183253
Paramjeet S, Manasa P, Korrapati N (2018) Biofuels: production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatal Agric Biotechnol 14:57–71. https://doi.org/10.1016/j.bcab.2018.02.007
Vyas BRM, Volc J, Šašek V (1994) Effects of temperature on the production of manganese peroxidase and lignin peroxidase by phanerochaete chrysosporium. Folia Microbiol 39(1): 19–22. https://doi.org/10.1007/BF02814523
Jiang F, Kongsaeree P, Schilke K, Lajoie C, Kelly C (2008) Effects of pH and temperature on recombinant manganese peroxidase production and stability. Appl Biochem Biotechnol 146(1):15–27. https://doi.org/10.1007/s12010-007-8039-5
Ravichandran A, Rao RG, Maheswarappa Gopinath S, Sridhar M (2021) Augmenting versatile peroxidase production from Lentinus squarrosulus and its role in enhancing ruminant feed. Bioresources 16(1):1600–1615. https://doi.org/10.15376/biores.16.1.1600-1615
Kwang-Soo S, Hwan KY, Jong-Soon L (2005) Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus. J Microbiol 43(6):503–509
Rajhans G, Sen S, Barik A, Raut S (2020) Elucidation of fungal dye-decolourizing peroxidase (DyP) and ligninolytic enzyme activities in decolourization and mineralization of azo dyes. J Appl Microbiol 129(6):1633–1643. https://doi.org/10.1111/jam.14731
Desai S et al (2011) Isolation of laccase producing fungi and partial characterization of laccase. Biotechnol Bioinformatics Bioeng 1(4):543–549
Rashmi R, Siddalingamurthy KR (2018) Microbial xyloglucanases: a comprehensive review. Biocatalysis Biotransformation 36(4):280–295. https://doi.org/10.1080/10242422.2017.1417394
Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization. IntechOpen. https://doi.org/10.5772/53544
Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178. https://doi.org/10.1007/s00253-008-1423-4
Yadav S, Yadav PK, Yadav D, Yadav KDS (2009) Purification and characterization of pectin lyase produced by aspergillus terricola and its application in retting of natural fibers. Appl Biochem Biotechnol 159(1):270–283. https://doi.org/10.1007/s12010-008-8471-1
Wu P, Yang S, Zhan Z, Zhang G (2020) Origins and features of pectate lyases and their applications in industry. Appl Microbiol Biotechnol 104(17):7247–7260. https://doi.org/10.1007/s00253-020-10769-8
Cameron MD, Aust SD (2001) Cellobiose dehydrogenase–an extracellular fungal flavocytochrome. Enzym Microb Technol 28(2):129–138. https://doi.org/10.1016/S0141-0229(00)00307-0
Nataraja S, Chetan DM, Krishnappa M (2010) Effect of temperature on cellulase enzyme activity in crude extracts isolated from solid wastes microbes. Int J Microbiol Res 2:44–47. https://doi.org/10.9735/0975-5276.2.2.44-47
Heinzelman P et al (2009) A family of thermostable fungal cellulases created by structureguided recombination. Proc Natl Acad Sci 106(14):5610–5615. https://doi.org/10.1073/pnas.0901417106
de Cássia Teixeira da Silva V et al (2016) Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus myceliophthora heterothallica F.2.1.4. Obtained by solid-state and submerged cultivation. Biochem Res Int 2016:e9781216. https://doi.org/10.1155/2016/9781216
Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897. https://doi.org/10.1007/s00253-010-2633-0
Watanabe T, Shirai N, Okada H, Honda Y, Kuwahara M (2001) Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Eur J Biochem 268(23):6114–6122. https://doi.org/10.1046/j.0014-2956.2001.02557.x
Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. J Basic Microbiol 50(1):5–20. https://doi.org/10.1002/jobm.200900338
Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30(2): 215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62(4):1151–1158. https://doi.org/10.1128/aem.62.4.1151-1158.1996
Hrmova M, MacGregor EA, Biely P, Stewart RJ, Fincher GB (1998) Substrate binding and catalytic mechanism of a barley beta-D-glucosidase/(1,4)-beta-D-glucan exohydrolase. J Biol Chem 273(18):11134–11143. https://doi.org/10.1074/jbc.273.18.11134
Harris PV et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316. https://doi.org/10.1021/bi100009p.20230050
Couturier M et al (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14(3):306–310. https://doi.org/10.1038/nchembio.2558
Sista Kameshwar AK, Qin W (2018) Comparative study of genome-wide plant biomassdegrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9(2):93–105. https://doi.org/10.1080/21501203.2017.1419296.30123665
Zhou S et al (2018) Investigation of lignocellulolytic enzymes during different growth phases of Ganoderma lucidum strain G0119 using genomic, transcriptomic and secretomic analyses. PLoS One 13(5):e0198404. https://doi.org/10.1371/journal.pone.0198404
Rigobello A, Ayres P (2022) Compressive behaviour of anisotropic mycelium-based composites. Sci Rep 12:6846. https://doi.org/10.1038/s41598-022-10930-5
Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC (2012) Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100(1):161–170. https://doi.org/10.1111/j.1365-2745.2011.01896.x
Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3(4):338–346. https://doi.org/10.1016/j.funeco.2010.02.001
Schwarze FWMR, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer Science & Business Media, Berlin
Adaskaveg JE, Gilbertson RL, Dunlap MR (1995) Effects of incubation time and temperature on in vitro selective delignification of silver leaf oak by Ganoderma colossum. Appl Environ Microbiol 61(1):138–144
Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:999–1010. https://doi.org/10.1139/b95-350
Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7(7):1001–1013. https://doi.org/10.1105/tpc.7.7.1001
Green F, Kuster TA, Highley TL (1996) Pectin degradation during colonization of wood by brown-rot fungi. Recent Res Dev Plant Pathol 1:83–93
van der Werf HMG, van der Veen Harsveld JE, Bouma ATM, ten Cate M (1994) Quality of hemp (Cannabis sativa L.) stems as a raw material for paper. Ind Crop Prod 2(3):219–227. https://doi.org/10.1016/0926-6690(94)90039-6
Jakes JE, Hunt CG, Zelinka SL, Ciesielski PN, Plaza NZ (2019) Effects of moisture on diffusion in unmodified wood cell walls: a phenomenological polymer science approach. Forests 10(12):1084. https://doi.org/10.3390/f10121084
Fengel D, Wegener G (2011) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin
Schwarze FWMR, Baum S, Fink S (2000) Dual modes of degradation by Fistulina hepatica in xylem cell walls of Quercus robur. Mycol Res 104(7):846–852. https://doi.org/10.1017/S0953756299002063
Schwarze FWMR, Baum S, Fink S (2000) Resistance of fibre regions in wood of Acer pseudoplatanus degraded by Armillaria mellea. Mycol Res 104(9):1126–1132. https://doi.org/10.1017/S0953756200002525
Ayuso-Fernández I, Rencoret J, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT (2019) Peroxidase evolution in white-rot fungi follows wood lignin evolution in plants. Proc Natl Acad Sci 116(36):17900–17905. https://doi.org/10.1073/pnas.1905040116
Wiedenhoeft A (2010) Structure and function of wood. In: Wood handbook: wood as an engineering material. GTR-190. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 3.1–3.18
Ferraz A, Costa THF, Siqueira G, Milagres AMF (2014) Mapping of cell wall components in lignified biomass as a tool to understand recalcitrance. In: da Silva SS, Chandel AK (eds) Biofuels in Brazil: fundamental aspects, recent developments, and future perspectives. Springer International Publishing, Cham, pp 173–202
Schwarze FWMR, Landmesser H (2000) Preferential degradation of pit membranes within tracheids by the basidiomycete physisporinus vitreus. Wood Res Technol 54(5):461–462. https://doi.org/10.1515/HF.2000.077
Tsoumis G (2009) Science and technology of wood: structure, properties and utilization. Verlag Kessel, Remagen
Schwarze FW, Ferner D (2003) Ganoderma on trees—differentiation of species and studies of invasiveness. Arboric J 27(1):59–77. https://doi.org/10.1080/03071375.2003.9747362
Boddy L (1992) Microenvironmental aspects of xylem defenses to wood decay fungi. In: Blanchette RA, Biggs AR (eds) Defense mechanisms of woody plants against fungi, Springer series in wood science. Springer, Berlin, pp 96–132
Eder M, Schäffner W, Burgert I, Fratzl P (2021) Wood and the activity of dead tissue. Adv Mater 33(28):2001412. https://doi.org/10.1002/adma.202001412
Geffert A, Geffertova J, Dudiak M (2019) Direct method of measuring the pH value of wood. Forests 10(10):852. https://doi.org/10.3390/f10100852
MacDonald J et al (2011) Transcriptomic responses of the softwood-degrading white-rot fungus phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol 77(10):3211–3218. https://doi.org/10.1128/AEM.02490-10
Hiscox J, O’Leary J, Boddy L (2018) Fungus wars: basidiomycete battles in wood decay. Stud Mycol. Leading women in fungal biology 89:117–124. https://doi.org/10.1016/j.simyco.2018.02.003
Boddy L (1983) Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biol Biochem 15(2):149–157. https://doi.org/10.1016/0038-0717(83)90096-2
Boddy L et al (2014) Climate variation effects on fungal fruiting. Fungal Ecol. Fungi in a changing world: the role of fungi in ecosystem response to global change 10:20–33. https://doi.org/10.1016/j.funeco.2013.10.006
Money NP (1995) Turgor pressure and the mechanics of fungal penetration. Can J Bot 73:96–102. https://doi.org/10.1139/b95-231
Fuhr MJ, Stührk C, Schubert M, Schwarze FWMR, Herrmann HJ (2011) Study of the combined effect of temperature, pH and water activity on the radial growth rate of the white-rot basidiomycete Physisporinus vitreus by using a hyphal growth model. arXiv 1106: 4521. https://doi.org/10.48550/arXiv.1106.4521
Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J. Solid-State Fermentation 13(2):85–101. https://doi.org/10.1016/S1369-703X(02)00122-5
Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161. https://doi.org/10.1007/s00226-012-0514-7
Thybring EE, Kymäläinen M, Rautkari L (2018) Moisture in modified wood and its relevance for fungal decay. IForest 11(3):418–422. https://doi.org/10.3832/ifor2406-011
Meyer L, Brischke C, Treu A, Larsson-Brelid P (2016) Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung 70(4): 331–339. https://doi.org/10.1515/hf-2015-0046
Jankowska A, Kozakiewicz P (2016) Determination of fibre saturation point of selected tropical wood species using different methods. Drewno: prace naukowe, doniesienia, komunikaty 59:197. https://doi.org/10.12841/wood.1644-3985.C07.12
Brischke C, Soetbeer A, Meyer-Veltrup L (2017) The minimum moisture threshold for wood decay by basidiomycetes revisited. A review and modified pile experiments with Norway spruce and European beech decayed by Coniophora puteana and Trametes versicolor. Holzforschung 71(11):893–903. https://doi.org/10.1515/hf-2017-0051
Thybring EE, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24(6):2375–2384. https://doi.org/10.1007/s10570-017-1278-x
Atalla RH, Brady JW, Matthews JF, Ding SY, Himmel ME (2009) Structures of plant cell wall celluloses. In: Biomass recalcitrance: deconstructing the plant cell wall for bioenergy, pp 188–212
Leppänen K et al (2011) X-ray scattering and microtomography study on the structural changes of never-dried silver birch, European aspen and hybrid aspen during drying. Holzforschung 65(6):865–873. https://doi.org/10.1515/HF.2011.108
Salmén L (2015) Wood morphology and properties from molecular perspectives. Ann For Sci 72(6):679–684. https://doi.org/10.1007/s13595-014-0403-3
Hubbe MA, Pizzi A, Zhang H, Halis R (2018) Critical links governing performance of selfbinding and natural binders for hot-pressed reconstituted lignocellulosic board without added formaldehyde: a review. Bioresources 13(1):2049–2115
Ramiah MV (1970) Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci 14(5):1323–1337. https://doi.org/10.1002/app.1970.070140518
Hariharan S, Nambisan P (2013) Optimization of lignin peroxidase, manganese peroxidase, and lac production from ganoderma lucidum under solid state fermentation of pineapple leaf. Bioresources 8(1):250–271
Irshad M, Asgher M (2011) Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. Afr J Biotechnol 10(79):18234–18242. https://doi.org/10.4314/ajb.v10i79
Iqbal HMN, Asgher M, Bhatti HN (2011) Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. Bioresources 6(2):1273–1287
Asgher M, Sharif Y, Bhatti HN (2010) Enhanced production of ligninolytic enzymes by ganoderma lucidum IBL-06 using lignocellulosic agricultural wastes. Int J Chem React Eng 8(1). https://doi.org/10.2202/1542-6580.2203
Holt GA et al (2012) Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J Biobased Mater Bioenergy 6(4):431–439. https://doi.org/10.1166/jbmb.2012.1241
Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci. The Contribution of Cereals to a Healthy Diet 46(3):327–347. https://doi.org/10.1016/j.jcs.2007.09.008
Song L, Ma F, Zeng Y, Zhang X, Yu H (2013) The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresour Technol. Biorefineries 135:89–92. https://doi.org/10.1016/j.biortech.2012.09.004
Akpinar M, Ozturk Urek R (2012) Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Prep Biochem Biotechnol 42:582–597. https://doi.org/10.1080/10826068.2012.673528
Mishra V, Jana AK, Jana MM, Gupta A (2017) Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour Technol 236:49–59. https://doi.org/10.1016/j.biortech.2017.03.148
Chang AJ, Fan J, Wen X (2012) Screening of fungi capable of highly selective degradation of lignin in rice straw. Int Biodeterior Biodegradation 72:26–30. https://doi.org/10.1016/j.ibiod.2012.04.013
Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109(2): 150–158. https://doi.org/10.1017/S0953756204001352
Li D, Alic M, Brown JA, Gold MH (1995) Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol 61(1):341–345. https://doi.org/10.1128/aem.61.1.341-345.1995
Asther M, Corrieu G, Drapron R, Odier E (1987) Effect of tween 80 and oleic acid on ligninase production by phanerochaete chrysosporium INA-12. Enzym Microb Technol 9(4):245–249. https://doi.org/10.1016/0141-0229(87)90024-X
Sánchez Muñoz S et al (2021) Surfactants in biorefineries: role, challenges & perspectives. Bioresour Technol 345:126477. https://doi.org/10.1016/j.biortech.2021.126477
Andersson R, Westerlund E, Tilly AC, Åman P (1993) Natural variations in the chemical composition of white flour. J Cereal Sci 17(2):183–189. https://doi.org/10.1006/jcrs.1993.1018
Ballesteros LF, Teixeira JA, Mussatto SI (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 7(12): 3493–3503. https://doi.org/10.1007/s11947-014-1349-z
Barbero-López A, Monzó-Beltrán J, Virjamo V, Akkanen J, Haapala A (2020) Revalorization of coffee silverskin as a potential feedstock for antifungal chemicals in wood preservation. Int Biodeterior Biodegradation 152:105011. https://doi.org/10.1016/j.ibiod.2020.105011
Bresciani L, Calani L, Bruni R, Brighenti F, Del Rio D (2014) Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res Int. Coffee – Science, Technology and Impacts on Human Health 61:196–201. https://doi.org/10.1016/j.foodres.2013.10.047
Borrelli RC, Esposito F, Napolitano A, Ritieni A, Fogliano V (2004) Characterization of a new potential functional ingredient: coffee silverskin. J Agric Food Chem 52(5):1338–1343. https://doi.org/10.1021/jf034974x
Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59(12):1673–1685. https://doi.org/10.1211/jpp.59.12.0010
Li Z, Zhang J, Qin L, Ge Y (2018) Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain Chem Eng 6(2):2591–2595. https://doi.org/10.1021/acssuschemeng.7b04070
Tripathi JP, Yadav JS (1992) Optimisation of solid substrate fermentation of wheat straw into animal feed by Pleurotus ostreatus: a pilot effort. Anim Feed Sci Technol 37(1):59–72. https://doi.org/10.1016/0377-8401(92)90120-U
Yadav JS (1987) Influence of nutritional supplementation on solid-substrate fermentation of wheat straw with an alkaliphilic white-rot fungus (Coprinus sp.). Appl Microbiol Biotechnol 26(5):474–478. https://doi.org/10.1007/BF00253535
Yadav JS, Tripathi JP (1991) Optimization of cultivation and nutrition conditions and substrate pretreatment for solidsubstrate fermentation of wheat straw by Coriolus versicolor. Folia Microbiol 36(3):294–301. https://doi.org/10.1007/BF02814364
Haneef M et al (2017) Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 7(1):41292. https://doi.org/10.1038/srep41292
Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC (2017) Morphology and mechanics of fungal mycelium. Sci Rep 7(1):13070. https://doi.org/10.1038/s41598-017-13295-2
Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A (2020) Finetuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl Bio Mater 3(2):1044–1051. https://doi.org/10.1021/acsabm.9b01031
Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC (2018) Stochastic continuum model for mycelium-based bio-foam. Mater Des 160:549–556. https://doi.org/10.1016/j.matdes.2018.09.046
Green DW, Winandy JE, Kretschmann DE (1999) Mechanical properties of wood. In: Wood handbook: wood as an engineering material, p 113
Shen Y-L, Finot M, Needleman A, Suresh S (1994) Effective elastic response of two-phase composites. Acta Metall Mater 42(1):77–97. https://doi.org/10.1016/0956-7151(94)90050-7
Curling S, Clausen C, Winandy J (2002) Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay. For Prod J 52(7): 34–39
Selig ET, Roner CJ (1987) Effects of particle characteristics on behavior of granular material. In: Transportation research record, 1131
Appels FVW et al (2019) Fabrication factors influencing mechanical, moisture- and waterrelated properties of mycelium-based composites. Mater Des 161:64–71. https://doi.org/10.1016/j.matdes.2018.11.027
Gou L, Li S, Yin J, Li T, Liu X (2021) Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. Constr Build Mater 304: 124656. https://doi.org/10.1016/j.conbuildmat.2021.124656
He J, Cheng CM, Su DG, Zhong MF (2014) Study on the mechanical properties of the latexmycelium composite. Appl Mech Mater 507:415–420. https://doi.org/10.4028/www.scientific.net/AMM.507.415
Arvidsson R, Nguyen D, Svanström M (2015) Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ Sci Technol 49(11):6881–6890. https://doi.org/10.1021/acs.est.5b00888
Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ (2019) Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci Rep 9(1):3766. https://doi.org/10.1038/s41598-019-40442-8
Jiang L, Walczyk D, McIntyre G, Bucinell R, Tudryn G (2008) Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. Appl Biochem Biotechnol 146(1):50–59. https://doi.org/10.1016/j.jmapro.2017.04.029
Sàez D, Grizmann D, Trautz M, Werner A (2021) Developing sandwich panels with a mid-layer of fungal mycelium composite for a timber panel construction system. In: Proceedings of the 2021 world conference on timber engineering
Ziegler AR, Bajwa SG, Holt GA, McIntyre G, Bajwa DS (2016) Evaluation of physicomechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl Eng Agric 32(6):931–938. https://doi.org/10.13031/aea.32.11830
Elsacker E, Søndergaard A, Van Wylick A, Peeters E, De Laet L (2021) Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr Build Mater 283:122732. https://doi.org/10.1016/j.conbuildmat.2021.122732
Elsacker E et al (2021) Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal Biol Biotechnol 8(1):18. https://doi.org/10.1186/s40694-021-00125-4
López Nava JA, Méndez González J, Ruelas Chacón X, Nájera Luna JA (2016) Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Mater Manuf Process 31(8):1085–1090. https://doi.org/10.1080/10426914.2015.1070420
Elsacker E, Vandelook S, Brancart J, Peeters E, Laet LD (2019) Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 14(7):e0213954. https://doi.org/10.1371/journal.pone.0213954
Heisel F et al (2018) Design, cultivation and application of load-bearing mycelium components: the MycoTree at the 2017 Seoul Biennale of architecture and urbanism. Int J Sustain Energy Dev 6(1):296–303. https://doi.org/10.20533/ijsed.2046.3707.2017.0039
Travaglini S, Noble J, Ross PG, Dharan CKH (2013) Mycology matrix composites. In: Proceedings of the American Society for composites twenty-eighth technical conference, pp 517–535. https://doi.org/10.1017/CBO9781107415324.004
Travaglini S, Dharan CKH, Ross PG (2014) Mycology matrix sandwich composites flexural characterization. In: Proceedings of the American Society for composites 29th technical conference. DEStech Publications, Inc., pp 1941–1955
Lelivelt R, Lindner G, Teuffel P, Lamers H (2015) The production process and compressive strength of Mycelium-based materials. In: First International Conference on bio-based building materials, pp 1–6
Bruscato C, Malvessi E, Brandalise RN, Camassola M (2019) High performance of macrofungi in the production of mycelium-based biofoams using sawdust—sustainable technology for waste reduction. J Clean Prod 234:225–232. https://doi.org/10.1016/j.jclepro.2019.06.150
Sivaprasad S, Byju SK, Prajith C, Shaju J, Rejeesh CR (2021) Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.04.622
Ongpeng J, Inciong E, Siggaoat A, Soliman CA, Sendo VB (2020) Using waste in producing bio-composite mycelium bricks. Appl Sci 10. https://doi.org/10.3390/app10155303
Rigobello A, Ayres P (2021) Fragile computation: rethinking information technologies to foster situated ecologies. In: Proceedings of the deep city 2021 conference. (in press)
Rigobello A, Gaudillière-Jami N (2021) Designing the gross. In search for social inclusion. In: Design culture(s). Cumulus Conference Proceedings Roma, vol 2, pp 811–827
Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P (2019) Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol 6(1):17. https://doi.org/10.1186/s40694-019-0080-y